MiR-155 Induction by F. novicida but Not the Virulent F. tularensis Results in SHIP Down-Regulation and Enhanced Pro-Inflammatory Cytokine Response
نویسندگان
چکیده
The intracellular gram-negative bacterium Francisella tularensis causes the disease tularemia and is known for its ability to subvert host immune responses. Previous work from our laboratory identified the PI3K/Akt pathway and SHIP as critical modulators of host resistance to Francisella. Here, we show that SHIP expression is strongly down-regulated in monocytes and macrophages following infection with F. tularensis novicida (F.n.). To account for this negative regulation we explored the possibility that microRNAs (miRs) that target SHIP may be induced during infection. There is one miR that is predicted to target SHIP, miR-155. We tested for induction and found that F.n. induced miR-155 both in primary monocytes/macrophages and in vivo. Using luciferase reporter assays we confirmed that miR-155 led to down-regulation of SHIP, showing that it specifically targets the SHIP 3'UTR. Further experiments showed that miR-155 and BIC, the gene that encodes miR-155, were induced as early as four hours post-infection in primary human monocytes. This expression was dependent on TLR2/MyD88 and did not require inflammasome activation. Importantly, miR-155 positively regulated pro-inflammatory cytokine release in human monocytes infected with Francisella. In sharp contrast, we found that the highly virulent type A SCHU S4 strain of Francisella tularensis (F.t.) led to a significantly lower miR-155 response than the less virulent F.n. Hence, F.n. induces miR-155 expression and leads to down-regulation of SHIP, resulting in enhanced pro-inflammatory responses. However, impaired miR-155 induction by SCHU S4 may help explain the lack of both SHIP down-regulation and pro-inflammatory response and may account for the virulence of Type A Francisella.
منابع مشابه
Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes
BACKGROUND Human monocyte inflammatory responses differ between virulent and attenuated Francisella infection. RESULTS A mixed infection model showed that the virulent F. tularensis Schu S4 can attenuate inflammatory cytokine responses to the less virulent F. novicida in human monocytes. CONCLUSION F. tularensis dampens inflammatory response by an active process. SIGNIFICANCE This suppres...
متن کاملMacrophage Pro-Inflammatory Response to Francisella novicida Infection Is Regulated by SHIP
Francisella tularensis, a Gram-negative facultative intracellular pathogen infecting principally macrophages and monocytes, is the etiological agent of tularemia. Macrophage responses to F. tularensis infection include the production of pro-inflammatory cytokines such as interleukin (IL)-12, which is critical for immunity against infection. Molecular mechanisms regulating production of these in...
متن کاملDifferential Expression of microRNAs in Francisella tularensis-Infected Human Macrophages: miR-155-Dependent Downregulation of MyD88 Inhibits the Inflammatory Response
Francisella tularensis is a Gram-negative, facultative intracellular pathogen that replicates in the cytosol of macrophages and is the causative agent of the potentially fatal disease tularemia. A characteristic feature of F. tularensis is its limited proinflammatory capacity, but the mechanisms that underlie the diminished host response to this organism are only partially defined. Recently, mi...
متن کاملCorrection: Fine Tuning Inflammation at the Front Door: Macrophage Complement Receptor 3-mediates Phagocytosis and Immune Suppression for Francisella tularensis
Complement receptor 3 (CR3, CD11b/CD18) is a major macrophage phagocytic receptor. The biochemical pathways through which CR3 regulates immunologic responses have not been fully characterized. Francisella tularensis is a remarkably infectious, facultative intracellular pathogen of macrophages that causes tularemia. Early evasion of the host immune response contributes to the virulence of F. tul...
متن کاملGalantamine Effect on Tularemia Pathogenesis in a BALB/c Mouse Model
Background: Galantamine is a drug used for the treatment of Alzheimer’s disease and some other cognitive disorders. It is an inhibitor of acetylcholinesterase however, interaction with nicotinic acetylcholine receptors has also been reported. Owing to the significant role of cholinergic anti-inflammatory pathways in neuro-immunomodulation, we decided to examine the effect of galantamine on tula...
متن کامل